

Journal of Fluorine Chemistry 69 (1994) 231-236

Reactions of cycloalkanecarboxylic acids with SF_4 . II. Fluorination of *gem*-dichlorocyclopropanecarboxylic acids with SF_4^*

Yu.M. Pustovit, P.I. Ogojko, V.P. Nazaretian*, A.B. Rozhenko

The Ukrainian Academy of Sciences, Institute of Organic Chemistry, Kiev 252094, Ukraine

Received 14 May 1993; accepted 19 September 1993

Abstract

Treatment of gem-dichlorocyclopropanecarboxylic acids with SF_4 yields many rearranged products, i.e. 1,1-difluoro-substituted olefins. The mechanism of the rearrangement is discussed.

Keywords: Cycloalkanecarboxylic acids; Sulphur tetrafluoride; Rearrangement mechanism; Stereochemistry; NMR spectroscopy; IR spectroscopy

1. Introduction

In contrast to cyclopropane-monocarboxylic acid [1], cyclopropanecarboxylic acids having more than one carboxylic group when treated with SF_4 readily undergo fluorination to yield the corresponding polytrifluoromethylcyclopropanes and bicyclic ethers [2]. Hence, it may be assumed that the introduction of other electronegative substituents, e.g. chlorine atoms, should also favour fluorination of the respective cyclopropanecarboxylic acids. We have found that treatment of *gem*dichloro-substituted cyclopropanecarboxylic acids with SF_4 yields the corresponding trifluoromethylcyclopropanes as the minor products, with olefins being the major products (see Scheme 1).

2. Experimental

¹H and ¹⁹F NMR spectra were measured with a Bruker WP-200 NMR spectrometer using TMS and CFCl₃ as internal standards, and CDCl₃ as the solvent (acetone- d_6 for compounds **5** and **8**). The ¹⁹F upfield chemical shift values are negative. ¹³C NMR spectra were measured with a Varian 300 NMR spectrometer using TMS as internal standard, and CDCl₃ as the solvent (acetone- d_6 for compounds **5** and **8**). Gas-liquid

chromatography was carried out with a Chrom 5 chromatograph fitted with FID using helium as the carrier gas, and employing a stainless-steel column (2500×3 mm) filled with 10% polyphenylmethylsiloxane on Chromatone AW (0.20–0.25 mm). Preparative GLC was carried out with a PACHV 07 chromatograph fitted with a thermal conductivity detector using a stainlesssteel column (2600×12 mm) filled with 10% polyphenylmethylsiloxane on Chromatone N-AW-HMDS (0.32–0.40 mm) and employing helium as the carrier

^{*}Dedicated to Professor L.M. Yagupolskii on the occasion of his 70th birthday.

^{*}Corresponding author.

Table 1						
Reactions	of	carboxylic	acids	with	SF_4	

Acid		SF ₄	Reaction conditions		Reaction product(s), yield
No.	mmol	(mmol)	Temp. (°C)	Time (h)	(%)
1	20	110	140	4	2, 5; 3, 78; 4, 9
5	20	120	140	4	6 , 6; 7 , 74
8	50	300	140	6	9, 11; 7, 70

Scheme 2.

Scheme 3.

Scheme 4.

gas. All boiling and melting points are reported uncorrected. Vapour-phase infrared spectra were measured with a UR-20 (Zeiss) spectrometer.

2,2-Dichlorocyclopropanecarboxylic acid (1)

KMnO₄ (33 g, 210 mmol) was added to a stirred solution of 2,2-dichlorocyclopropylmethanol [3] (14.1 g, 100 mmol) and 6.7 g (27 mmol) of MgSO₄·7H₂O in 100 ml of water at such a rate that the temperature was maintained at 75 °C. After addition was complete, the mixture was stirred for an additional 0.5 h. Excess permanganate was destroyed by the addition of methanol. The reaction mixture was filtered to remove MnO₂, acidified with dilute HCl to pH=2, and evaporated to dryness. The residue was extracted with hot acetone.

The solvent was removed under reduced pressure to yield crude 1 (13.0 g, 84%). Recrystallization from hexane afforded 1 as colourless crystals, m.p. 75 °C (lit. value [4]: m.p. 76 °C).

cis-3,3-Dichlorocyclopropan-1,2-dicarboxylic acid (8)

KMnO₄ (39 g, 247 mmol) was added to a stirred solution of *cis*-1,2-bis(oxymethyl)-3,3-dichlorocyclopropane **14** (10.26 g, 60 mmol) and 8 g (32 mmol) of MgSO₄.7H₂O in 100 ml of water at such a rate that the temperature was maintained at 75–80 °C. After addition was complete, the mixture was stirred for an additional 0.5 h. Excess permanganate was destroyed by the addition of methanol. The reaction mixture was filtered to remove MnO₂, acidified with dilute HCl to pH=2, and evaporated to dryness. The residue was extracted with hot acetone. The solvent was removed under reduced pressure to yield crude **8** (8.5 g, 71%). Recrystallization from CH₃COOH afforded **8** as colourless crystals.

trans-3-3,3-Dichlorocyclopropan-1,2-dicarboxylic acid (5)

cis-3,3-Dichlorocyclopropan-1,2-dicarboxylic acid (8) (7 g, 35 mmol) and 5 cm³ of concentrated HCl were

Table 2				
Physical	properties	of	compounds	prepared

Compound	B.p./mmHg	d_4^{22}	n ²² _D	Elemental analy	Elemental analyses		
No.	[m.p.] (°C)	(g cm ⁻³)		Found (%)	Molecular formula	Calc.%	
3ª	86/760	1.393	1.384	C 26.8	C ₄ H ₃ Cl ₂ F ₃	26.8	
				H 1.6		1.7	
				Cl 39.5		39.6	
				F 31.8		31.8	
5	[218]	-		C 30.2	C ₅ H ₄ Cl ₂ O ₄	30.2	
				Н 2.0		2.0	
				Cl 35.6		35.6	
7 ⁶	93/760	1.534	1.355	C 24.4	$C_5H_2Cl_2F_6$	24.3	
				H 0.8		0.8	
				Cl 28.7		28.7	
				F 46.0		46.2	
8	[195]	-	-	C 30.2	C ₅ H ₄ Cl ₂ O ₄	30.2	
				H 2.0		2.0	
				Cl 35.6		35.6	
9	135/760	1.641	1.395	C 26.6	C ₅ H ₂ Cl ₂ F ₄ O	26.7	
				H 0.8		0.9	
				CI 31.5		31.5	
				F 33.7		33.8	
13	107/10	-	-	C 42.5	$C_7H_{10}Cl_2O_2$	42.7	
	[52]			H 5.1		5.1	
				Cl 36.0		36.0	
14	121/0.3	-	-	C 35.1	C ₅ H ₈ Cl ₂ O ₂	35.1	
	[71]			H 4.6		4.7	
				Cl 41.4		41.5	
15 ^c	78/20	1.374	1.498	C 39.2	C ₅ H ₆ Cl ₂ O	39.2	
				Н 3.9		4.0	
				Cl 46.3		46.3	

 $^{*}IR(cm^{-1}): 1790 (C=C).$

 $^{b}IR(cm^{-1})$: 1763 (C=C).

°Lit. value [6]: b.p. 80 °C/15 mmHg; $n_D^{22} = 1.4982$.

hcated at 200 °C (1 h) in a sealed tube and then cooled to room temperature. The colourless precipitate was collected by filtration and dried *in vacuo* at 100 °C. Yield, 6.8 g (97%).

2.1. Treatment of carboxylic acids with SF_4 . General procedure

An acid and SF₄ were reacted in a stainless-steel cylinder using the appropriate amounts of reactant, reaction time and temperature as indicated in Table 1. The gaseous products were released and the liquid residue poured into ice/water, the organic layer separated, dried over P_2O_5 and purified by distillation or preparative GLC, as necessary. The physical properties and analyses of the products are listed in Table 2 and the NMR spectral data is recorded in Table 3.

1,1-Dichlorobuta-1,3-diene (11)

2,2-Dichlorocyclopropylmethanol (10) (4.2 g, 30 mmol) was added dropwise to P_2O_5 (4.30 g, 30 mmol).

The reaction mixture was warmed for some time with a flame and the low boiling products were then distilled off. The product with b.p. $103 \,^{\circ}C$ (decomp.) was collected (1.9 g, 51%) and identified as 1,1-dichlorobuta-1,3-diene (11) [5].

Cisoid-4-methyl-8,8-dichloro-3,5-dioxabicyclo[5.1.0]octane (13)

A solution consisting of 1120 g (20 mol) KOH in 1 dm³ of water was added to a vigorously stirred solution of freshly distilled *cis*-2-butene-1,4-diol acetal (12) (114 g, 1 mol) in 810 cm³ of CHCl₃. During this procedure, the reaction temperature was maintained below 30 °C by means of a cold water bath. Subsequently, the reaction mixture was left at room temperature for 8 h. The resulting precipitate was filtered off and washed with CHCl₃ (3×100 cm³). The organic layer was separated, washed with water (3×300 cm³), dried over sodium sulfate and concentrated *in vacuo*. The residue was distilled under reduced pressure. Yield, 60 g (30.5%).

Formula	Nucleus No.	Signal struct.	Chemical shift (ppm)	Coupling constants (Hz)
2 4				
	1	m	2.59	
	2. 3	m	1.88-2.20	
··· •	4	d	64.5ª	${}^{3}J_{41} = 7$
2	·	-		··•••
F CH2-CCI2F	1	m	3.17	${}^{3}J_{1,2} = 7.6; \; {}^{3}J_{1,3} = 13;$ ${}^{4}J_{1,4(5)} = 1.4$
F H	2	m	4.40	${}^{3}J_{2,1} = 7.6; \; {}^{3}J_{2,4} = 23;$ ${}^{3}J_{2,5} = 1.4$
3	3	t	- 54.0	${}^{3}J_{3,1} = 13$
	1	d d	-87.5	${}^{2}I_{1,2} = 315 \cdot {}^{3}I_{1,2} = 23$
	4	dd	- 84 7	${}^{2}I_{4,5} = 31.5; \; {}^{3}I_{4,2} = 1.4$
	5	dd	- 64.7	$J_{5,4} = 51.5, J_{5,2} = 1.4$
	6 {H}	d d	158.3	$J_{6,4(5)} = 289; \ J_{6,5(4)} = 292$
	7 {H}	m	71.7	${}^{2}J_{7,4(5)} = 19; \; {}^{2}J_{7,5(4)} = 29.5;$ ${}^{3}J_{7,3} = 4.4$
	8 {H}	d d	42.9	${}^{2}J_{8,3} = 25.3; \; {}^{3}J_{8,4} = 5.9;$ ${}^{3}J_{8,5} = 5.9$
	9 {H}	m	119.8	${}^{1}J_{9,3} = 298; {}^{4}J_{9,4(5)} = 3.7;$ ${}^{4}J_{9,5(4)} = 5.1$
1				
3 H CI	1	d	6.35	${}^{3}J_{1,2} = 11$
F C=C	2	d d	5.19	${}^{3}J_{2,1} = 11; \; {}^{3}J_{2,3} = 24$
	3	d d	- 82.3	${}^{2}J_{34} = 15; \; {}^{3}J_{32} = 24$
F H	4	d	- 84.4	${}^{2}J_{4,2} = 15$
4 ^b		ŭ		- 4,5
CI_4_CI	1	S	3.00	
	2	bs	10.0	
	-	5	38.0	
	4	5	58.9	
_		3	165.0	
5	5	\$	103.7	
			0.50	
F ₂ C C H	1	m	2.76	3.
СI 6	2	d	64.5	$J_{2,1} = 4$
11.6	1		3.07	${}^{3}I - 7 \cdot {}^{3}I - 7 \cdot$
$\begin{array}{c} CF_3 \\ 4 \\ 9 \\ 1 \\ 10 \\ 3 \\ 10 \\ 10 \\ 10 \\ 10 \\ 10 \\$	1	111	5.77	$J_{1,2} = 10$
	2	m	4.55	$J_{2,1} = 10; \ J_{2,4} = 22$
5 LL 2 F H	3	m	54.5	${}^{3}J_{3,1} = 7; \; {}^{4}J_{3,6} = 14$
1 11	4	t	-81.6	${}^{2}J_{4,5} = 22; \; {}^{3}J_{4,2} = 22$
7	5	d	- 80.3	${}^{2}J_{5,4} = 22$
	6	m	- 65.5	${}^{3}J_{6,1} - 7; \; {}^{4}J_{6,3} - 14$
	7 {H}	dd	159.7	${}^{1}J_{7,4(5)} = 289; {}^{1}J_{7,5(4)} = 294$
	8 {H}	d d	71.2	${}^{2}J_{7,4(5)} = 18; {}^{2}J_{7,5(4)} = 37$
	9 (H)	m	54.8	${}^{2}J_{9,3} = 29.8; {}^{2}J_{9,6} = 29;$ ${}^{3}J_{9,4} = 6.8; {}^{3}J_{9,5} = 6.8$
	10 /111	d	117.4	$^{1}L_{0.7} = 300$
	11 {H}	q	122.9	${}^{1}J_{11,6} = 282$
	1	S	3.09	
ĥ, X, "ĥ	2	b s	9.9	
	3	s	36.7	
	4	S	59.2	
8	5	S	156.6	

(continued)

Table 3 (continued)

Formula	Nucleus No.	Signal struct.	Chemical shift (ppm)	Coupling constants (Hz)
CI_6,CI	1	m	3.92	${}^{3}J_{1,2} = 14$
	2	AB	-57.0	${}^{2}J_{2,3} = 154$
	3	AB	-82.6	${}^{2}J_{3,2} = 154$
\vec{F} a a \vec{F}	4	m	125.9	${}^{1}J_{4,2} = 262; {}^{1}J_{4,3} = 262;$ ${}^{3}J_{4,2(3)} = 2.3; {}^{3}J_{4,3(2)} = 6.5$
F G F	5	d d	37.7	${}^{2}J_{5,2(3)} = 29; {}^{2}J_{5,3(2)} = 42$
9	6	t	56.5	${}^{3}J_{6,2(3)} = 7.6$
2 H, 7 8, CI	1.2	m	5.20-5.44	
H 5 6 C-C	3,4	m	6.33-6.57	
	5 {H}	s	120.5	
11	6(7) {H}	s	129.3	
	7(6) {H}	s	131.0	
	8 {H}	s	122.2	
нсн	1	d	1.30	${}^{3}J_{1.5} = 5.1$
	2	m	2.22	,
	3	m	3.61-3.74	
F CHa	4	m	4.46-4.58	
13	5	q	4.58	${}^{3}J_{5,1} = 5.1$
_ع دار دا ع				
ή ^H c ^H μ	1(2)	d d	3.55	${}^{2}J_{1,2} = 12; {}^{3}J_{1(2), 3} = 8$
	2(1)	d d	3.93	${}^{2}J_{2,1} = 12; {}^{3}J_{2(1), 3} = 6$
	3	m	1.95	
14	4	b s	3.89	
ĥĮ Į́́	1,2	m	3.94-4.03	
H O H	3	m	2.43	
15				

*Lit. value [7]: -64.15 ppm.

^bIR (cm⁻¹): 1630 (C=CCl₂); 1758 (C=CF₂).

^cLit. value [7]: -64.95 ppm.

cis-1,2-Bis(oxymethyl)-3,3-dichlorocyclopropane (14)

A mixture consisting of 13 (55 g, 279 mmol) and 50 cm³ of 1% HCl was heated at 80 °C (3 h) while the acetaldehyde formed in the reaction was distilled off. Excess water was evaporated off and the residue distilled *in vacuo* (b.p. 121 °C/0.3 mmHg) or crystallized from benzene. Yield, 45.5 g (95%).

Attempted distillation of cis-1,2-bis(oxymethyl)-3,3dichlorocyclopropane (14) at 160–165 °C/20 mmHg resulted in the formation of 6,6-dichloro-3-oxabicy-clo[3.1.0]hexane (15) [6]. Yield, 55%.

3. Results and discussion

The formation of olefins may proceed via the carbocations A or B, as shown in Scheme 2. The opening of the cyclopropane ring more probably proceeds after formation of the difluorocarbocation B, but not at the earlier stage of formation of a mesomeric trifluorosulfuroxyfluorocarbocation A, which is less electrophilic than the difluorocarbocation B [8].

This conclusion has been confirmed indirectly from an experiment where carbocation D which is more electrophilic than difluorocarbocation B was generated (Scheme 3).

Opening of the cyclopropane ring in difluorocarbocation B proceeds at the most substituted bond, as shown in other reactions of cyclopropanes [9]. Subsequent transformation of the intermediate olefins C into final olefins proceeds (in the case R=H) with proton elimination or by neutralization with HF_2^- to give 4 or 3. When R=COF, neutralization of the intermediate olefin C with HF_2^- is followed by fluorination of the fluoroformyl group. The previous unknown gem-dichlorocyclopropanecarboxylic acids 5 and 8 were prepared as shown in Scheme 5.

References

- [1] W. Dmowski and R.A. Kolinski, Pol. J. Chem., 52 (1978) 547.
- [2] Yu.M. Pustovit, P.I. Ogojko, V.P. Nazaretian and L.B. Faryat'eva, J. Fluorine Chem., 69 (1994) 225.
- [3] A. Kh. Khusid, G.V. Kryshtal, V.F. Kucherov and L.A. Yanovskaya, *Synthesis*, (1977) 428.
- [4] R.C. Woodworth and P.S. Skell, J. Am. Chem. Soc., 79 (1957) 2542.
- [5] F. Guibe, Yang Ting Xian and G. Balavoine, J. Organomet. Chem., 306 (1986) 267.
- [6] J.C. Anderson and C.B. Reese, Chem. Ind. (London), (1963) 575.
- [7] R. Fields, R.N. Haszeldine and D. Peter, J. Chem. Soc., (1969) 165.
- [8] Yu.M. Pustovit and V.P. Nazaretian, J. Fluorine Chem., 55 (1991) 29.
- [9] L.A. Yanovskaya, V.A. Dombrovskij and A. Kh. Khusid, *Cyklopropany s funkcyonalnymi gruppami*, Nauka, Moscow, 1980, pp. 107, 151.